Interfacial stability and bioactive potential of sustainable peppermint oil-mediated fluorescent selenium nanoparticles

Authors

  • Rawah Radhwan Abdulbari Department of Chemistry, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad 10053, Iraq
  • Wasan M. Alwan Department of Chemistry, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad 10053, Iraq
  • Rawaa H. Salman Ministry of Education Iraqi Directorate of Education Baghdad Karkh III, Baghdad 10053, Iraq
  • Lekaa K. Abdul Karem Department of Chemistry, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad 10053, Iraq
  • Ahmed A. El-Sayed Photochemistry Department, National Research Centre, Giza 12622, Egypt
  • Ahmed M. Khalil Photochemistry Department, National Research Centre, Giza 12622, Egypt (Email: akhalil75@yahoo.com)

Abstract

Synthesizing nanoparticles through green processes is a well-recognized challenge. It is a low-cost approach to produce multifunctional nanomaterials by using plant-based extracts as natural reductants and stabilizers. In this work, selenium nanoparticles were synthesized in Mentha piperita L. peppermint 3% as the concentration of the precursor solution. It is an essential oil containing bioactive compounds such as menthol, menthone, and flavonoids. The functionalized colloid of oil after being loaded with selenium nanoparticles is believed to exhibit enhanced properties. Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and transmission electron microscopy have been employed to characterize the synthesized selenium nanoparticles. It was found that the selenium nanoparticles were uniformly distributed, spherical, and stable. Contact angle measurements showed that the selenium nanoparticles-loaded peppermint oil exhibited reduced hydrophobicity compared to pure oil, suggesting stronger interactions with polar surfaces. Interfacial interaction proposes that selenium nanoparticles preferentially migrate to the oil-water interface, reducing interfacial tension and stabilizing the colloidal system. This behavior contributes to the overall stability and uniformity of the oil/selenium nanoparticles conjugate. The present colloid displayed a significant enhancement in fluorescence. This confirms successful conjugation and enhanced optical performance, indicating their potential for bioimaging applications. Biological assessments demonstrated that the synthesized selenium nanoparticles and peppermint oil formulations exhibited significant antimicrobial and antioxidant properties. Hence, introducing these nanoparticles to peppermint oil increased its antioxidant capacity. The engineered colloidal system yielded a stable, fluorescent, and biologically active oil that may contribute to potential applications in bioimaging, antimicrobial therapy, antioxidant formulations, and nanotheranostics.

Document Type: Original article

Cited as: Abdulbari, R. R., Alwan, W. M., Salman, R. H., Abdul Karem, L. K., El-Sayed, A. A., Khalil, A. M. Interfacial stability and bioactive potential of sustainable peppermint oil-mediated fluorescent selenium nanoparticles. Capillarity, 2026, 18(3): 83-95. https://doi.org/10.46690/capi.2026.03.01

DOI:

https://doi.org/10.46690/capi.2026.03.01

Keywords:

Peppermint oil, selenium nanoparticles, colloid, antibacterial activity, fluorescence, interfacial behavior

References

Abdelhamid, A. E., El-Sayed, A. A., Swelam, S. A., et al. Encapsulated polycaprolactone with triazole derivatives and selenium nanoparticles as anticancer agents. ADMET and DMPK, 2023, 11(4): 561-572.

Abdel-Raouf, N., Al-Enazi, N. M., Ibraheem, I. B. M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 2017, 10: S3029-S3039.

Aliki, T., Archontoula, C., Evaggelos, Z., et al. Antioxidant activity of Mentha piperita L. of Greek flora. International Organic and Medicinal Chemistry Journal, 2021, 11(3): 555814.

Alkherb, W. A. H., Farag, S. M., Alotaibi, A. M., et al. Pyrazolopyrimidine derivatives conjugated with selenium nanoparticles for larvicidal activity. Colloids and Surfaces B: Biointerfaces, 2024, 241: 114040.

Al-Mijalli, S. H., Assaggaf, H., Qasem, A., et al. Antioxidant, antidiabetic, and antibacterial potentials and chemical composition of Salvia officinalis and Mentha suaveolens. Advances in Pharmacological and Pharmaceutical Sciences, 2022a, 2022(1): 2844880.

Al-Mijalli, S. H., Mrabti, N. N., Ouassou, H., et al. tochemical variability and antibacterial mechanisms of Mentha piperita. Foods, 2022b, 11(21): 3466.

Aparna, L. M., Aparna, S., Sarada, I., et al. Assessment of sputum quality and its importance in the rapid diagnosis of pulmonary tuberculosis. Archives of Clinical Microbiology, 2017, 8(4): 53.

Asbahani, A. El, Miladi, K., Badri, W., et al. Essential oils: extraction to encapsulation. International Journal of Pharmaceutics, 2015, 483(1-2): 220-243.

Avendaño, R., Muñoz-Montero, S., Rojas-Gätjens, D., et al. Selenium nanoparticle production in Pseudomonas putida. Microbial Biotechnology, 2023, 16(5): 931-946.

Badawy, M. E. I., Lotfy, T. M. R., Shawir, S. M. S. Chitosan silver nanoparticles for meat preservation. Bulletin of the National Research Centre, 2019, 43(1): 83.

Balaji, S., Pandian, M. S., Ganesamoorthy, R., et al. Green synthesis of metal oxide nanoparticles using plant extracts: A sustainable approach to combat antimicrobial resistance. Environmental Nanotechnology, Monitoring & Management, 2025, 23: 101066.

Balouiri, M., Sadiki, M., Ibnsouda, S. K. Methods for in vitro antimicrobial evaluation. Journal of Pharmaceutical Analysis, 2016, 6(2): 71-79.

Bhuvaneshwari, L., Arthy, E., Anitha, C., et al. Phytochemical analysis and antibacterial activity of Nerium oleander. Ancient Science of Life, 2007, 26(4): 24-28.

Chakraborty, K., Chakravarti, A. R., Bhattacharjee, S. Bioactive components of peppermint (Mentha piperita L.). Journal of Pharmacognosy and Phytochemistry, 2022, 11(1): 109-114.

Chang, Y., Xue, R., Wang, S., et al. Scale-dependent dynamics of CO2-brine interfaces in mixed-wetting porous media: From sub-grain to grain levels. Physics of Fluids, 2025, 37(6): 0267616.

Dahl, J. A., Maddux, B. L. S., Hutchison, J. E. Toward greener nanosynthesis. Chemical Reviews, 2007, 107(6): 2228-2269.

Das, D., Paul, P. Environmental impact of silver nanoparticles and its sustainable mitigation by novel approach of green chemistry. Plant Nano Biology, 2025, 14: 100210.

Dorman, H. J. D., Kosar, M., Baser, K. H. C., et al. Phenolic profile and antioxidant evaluation of Mentha x piperita L. extracts. Natural Product Communications, 2009, 4(4): 535-542.

Du, K., Glogowski, E., Emrick, T., et al. Adsorption energy of nano-and microparticles at liquid-liquid interfaces. Langmuir, 2010, 26(15): 12518-12522.

Eftekhari, A., Khusro, A., Ahmadian, E., et al. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arabian Journal of Chemistry, 2021, 14(5): 103106.

El-Masry, H. M., Atwa, N. A., El-Beih, A. A., et al. Phenazine-producing Pseudomonas aeruginosa OQ158909: A promising candidate for biological activity and therapeutic applications. Egyptian Journal of Chemistry, 2023, 66(11): 281-303.

Ghayempour, S., Montazer, M. Herbal products on cellulosic fabric with controlled release: Comparison of in situ encapsulation and UV curing of the prepared nanocapsules. Cellulose, 2017, 24(9): 4033-4043.

Gherasim, O., Puiu, R. A., Bîrca, A. C., et al. An updated review on silver nanoparticles in biomedicine. Nanomaterials, 2020, 10(11): 2318.

Goharzadeh, A., Fatt, Y. Y., Sangwai, J. S. Effect of TiO2-SiO2 hybrid nanofluids on enhanced oil recovery process under different wettability conditions. Capillarity, 2023, 8(1): 1-10.

Guidotti-Takeuchi, M., Ribeiro, L. N. D. M., Dos Santos, F. A. L., et al. Essential oil-based nanoparticles as antimicrobial agents in the food industry. Microorganisms, 2022, 10(8): 1504.

Hafez, A. I., Ali, H. M., Sabry, R. M., et al. Hygienic and cost effective nanostructured core-shell pigments. Progress in Organic Coatings, 2023, 175: 107325.

Hashempur, M. H., Ghorat, F., Karami, F., et al. Topical delivery systems for plant-derived antimicrobials. International Journal of Biomaterials, 2025, 2025: 4251091.

Huang, Z., Keddie, J. L. Free energy modelling of a spherical nanoparticle at an oil/water interface. Soft Matter, 2025, 21(26): 5188-5193.

Hwang, Y. Y., Ramalingam, K., Bienek, D. R., et al. Nanoemulsion with cetylpyridinium chloride against A. baumannii. Antimicrobial Agents and Chemotherapy, 2013, 57(8): 3568-3575.

Jariani, P., Sabokdast, M., Moghadam, T. K., et al. Modulation of phytochemical pathways and antioxidant activity in peppermint by salicylic acid and GR24. Cells, 2024, 13(16): 1360.

Kamel, O. M. H. M., El-halim, M. D. A., Khalil, A. M., et al. A promising route to control mosquito larvae by metal nanoparticles. Egyptian Journal of Aquatic Biology and Fisheries, 2024, 28(5): 1699-1732.

Karthik, K. K., Cheriyan, B. V., Rajeshkumar, S., et al. A review on selenium nanoparticles and their biomedical applications. Biomedical Technology, 2024, 6: 61-74.

Lakowicz, J. R. Instrumentation for fluorescence spectroscopy, in Principles of Fluorescence Spectroscopy, edited by J. R. Lakowicz. Springer, Boston, pp. 27-61, 2006.

Liu, H., Cao, G. Effectiveness of the Young-Laplace equation at nanoscale. Scientific reports, 2016, 6(1): 23936.

Lv, P., Chang, Y., Liu, F., et al. CO2-brine mass transfer patterns and interface dynamics under geological storage conditions. International Journal of Heat and Mass Transfer, 2024, 222: 125184.

Lv, P., Liu, Y., Yang, W. Investigation on CO2 permeation in water-saturated porous media with disordered pore sizes. Experimental Thermal and Fluid Science, 2020, 119: 110207.

Maffei, M., Canova, D., Bertea, C. M., et al. UV-A effects on photomorphogenesis and essential-oil composition in Mentha piperita. Journal of Photochemistry and Photobiology B: Biology, 1999, 52(1-3): 105-110.

Mahendran, G., Rahman, L. U. Ethnomedicinal, phytochemical and pharmacological updates on peppermint (Mentha × piperita L.). Phytotherapy Research, 2020, 34(9): 2088-2139.

Martini, K. M., Boddu, S. S., Nemenman, I., et al. Maximum likelihood estimators for colony-forming units. Microbiology Spectrum, 2024, 12(9): e03946-23.

Mikhailova, E. O. Selenium nanoparticles: green synthesis and biomedical application. Molecules, 2023, 28(24): 8125.

Minakov, A. V., Pryazhnikov, M. I., Neverov, A. L., et al. Wettability, interfacial tension, and capillary imbibition of nanomaterial-modified cross-linked gels for hydraulic fracturing. Capillarity, 2024, 12(2): 27-40.

Nalawade, T. M., N., Bahat, K. G., Sogi, S. Antimicrobial activity of endodontic medicaments by agar well diffusion. International Journal of Clinical Pediatric Dentistry, 2016, 9(4): 335-341.

Oktay, M., Gülçin, I., Küfrevioğlu, Ö. I. Antioxidant activity of fennel seed extracts. LWT- Food Science and Technology, 2003, 36(2): 263-271.

Osman, H. H., Abdel-Hafez, H. F., Khidr, A. A. Efficacy of two nanoparticles and effective microorganisms on Spodoptera littoralis. International Journal of Agriculture Innovations and Research, 2015, 3(6): 1620-1626.

Park, H. E., Yang, S. O., Hyun, S. H., et al. Simple preparative gas chromatographic method for isolation of menthol and menthone from peppermint oil. Journal of Separation Science, 2012, 35(3): 416-423.

Peng, J., Zhang, L., Song, M., et al. NiFe hydroxide nanosheet synthesized by in-situ chelation for highly efficient oxygen evolution reaction. Materials Chemistry and Physics, 2021, 258: 123918.

Piacenza, E., Presentato, A., Heyne, B., et al. Tunable photoluminescence properties of selenium nanoparticles: Biogenic versus chemogenic synthesis. Nanophotonics, 2020, 9(11): 3615-3628.

Pisoschi, A. M., Pop, A., Georgescu, C., et al. Natural antimicrobials in food. European Journal of Medicinal Chemistry, 2018, 143: 922-935.

Purushothaman, G. Enumeration of twelve clinically important bacterial standards. International Journal of Creative Research Thoughts, 2018, 6(2): 880-893.

Raoof, G. F. A., El-anssary, A. A., Ali Abuaish, M. A., et al. Assessment of Vicia faba L. peels: Phytochemical characterization and evaluation of cytotoxic and antimicrobial potentials. Chemistry & Biodiversity, 2025, 22(2): e202402123.

Shahzadi, S., Fatima, S., Shafiq, Z., et al. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Advances, 2025, 15(5): 3858-3903.

Soni, M., Yadav, A., Maurya, A., et al. Advances in designing essential oil nanoformulations: An integrative approach to mathematical modeling with potential application in food preservation. Foods, 2023, 12(21): 4017.

Soundarya, V., Venkatesa Prabhu, S., Manivannan, S., et al. Biosynthesized AgNPs using Daphniphyllum neilgherrense. ChemistrySelect, 2025, 10(39): e02821.

Tharp, W. F., Abdul Karem, L. K., Karem, A., Chem, M. J. Green synthesis, characterization, antimicrobial and anticancer studies of zirconium oxide nanoparticles using thyme extract. Moroccan Journal of Chemistry, 2024, 12(2): 643-656.

Tharp, W. F., Karem, L. K. A. Preparation, diagnosis, theoretical study, biological evaluation and antioxidant assay of ZrO2 nanoparticles by green method. Baghdad Science Journal, 2025, 22(11): 3610-3619.

Tran, P. A., Webster, T. J. Selenium nanoparticles inhibit Staphylococcus aureus. International Journal of Nanomedicine, 2011, 6: 1553-1558.

Turner, G. W., Gershenzon, J., Croteau, R. B. Development of peltate glandular trichomes of peppermint. Plant Physiology, 2000, 124(2): 665-680.

Xue, R., Chang, Y., Wang, S., et al. Pore-scale microfluidic investigation of unsaturated CO2 bubble morphology and interface evolution during drainage-imbibition cycles. Capillarity, 2025, 15(3): 74-86.

Yarnell, E. Herbs for viral respiratory infections. Alternative and Complementary Therapies, 2018, 24(1): 35-43.

Zaidi, S., Dahiya, P. In vitro antimicrobial activity, phytochemical analysis and total phenolic content of essential oil from Mentha spicata and Mentha piperita. International Food Research Journal, 2015, 22(6): 2440-2445.

Zambonino, M. C., Quizhpe, E. M., Mouheb, L., et al. Biogenic selenium nanoparticles in biomedical sciences: Properties, current trends, novel opportunities and emerging challenges in theranostic nanomedicine. Nanomaterials, 2023, 13(3): 424.

Zarin, T., Aghajanzadeh, M., Riazi, M., et al. Experimental and numerical study of the water-in-oil emulsions in porous media. Capillarity, 2024, 13(1): 10-23.

Zhang, X., Liu, Z., Shen, W., et al. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 2016, 17(9): 1534.

Downloads

Download data is not yet available.

Downloads

Published

2026-01-21

How to Cite

Abdulbari, R. R., Alwan, W. M., Salman, R. H., Abdul Karem, L. K., El-Sayed, A. A., & Khalil, A. M. (2026). Interfacial stability and bioactive potential of sustainable peppermint oil-mediated fluorescent selenium nanoparticles. Capillarity, 18(3), 83–95. https://doi.org/10.46690/capi.2026.03.01