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Abstract:
The coalescence of liquid lenses is relevant in various applications, including inkjet printing
and fog harvesting. However, the dynamics of liquid-lens coalescence have been relatively
underexplored, particularly in the case of liquid lenses with larger contact angles. The
coalescence of low-viscosity liquid lenses is numerically investigated by means of the
pseudopotential multi-component lattice Boltzmann method over a wide range of contact
angles. In two-dimensional simulations, numerical results on the growth of the bridge
height are in quantitative agreement with experimental measurements for small contact
angles. In addition, a comparison of the simulation results with a theoretical approach based
on the thin-sheet equations for liquid lenses shows that these equations accurately capture
the bridge-growth dynamics up to moderate contact angles. For the three-dimensional case,
the growth of the bridge radius is independent of the equilibrium contact angle of the liquid
lenses at the initial stage of growth. The dependency between the growth of the bridge
height and the bridge radius exhibits a non-linear to linear transition.

1. Introduction
The coalescence of droplets is a fundamental process rel-

evant to natural phenomena and many industrial applications,
such as formation of rain drops (Low and List, 1982), stability
of emulsions (Kumar et al., 1996; Goff, 1997), enhanced oil
recovery (Perazzo et al., 2018), coating (Eslamian and Soltani-
Kordshuli, 2018) and printing (Wijshoff, 2018). Coalescence
is initiated when two droplets come into contact and form
a growing liquid bridge. Finally, the two droplets merge
into a single droplet, which relaxes to its equilibrium shape.
The growth of the bridge is controlled by the interplay of
capillarity, viscosity and inertia, and exhibits three different
dynamic regimes: the inertial limited viscous regime (Paulsen
et al., 2012; Paulsen, 2013; Anthony et al., 2020), the viscous
regime (Hopper, 1984, 1990; Eggers et al., 1999), and the

inertial regime (Aarts et al., 2005; Paulsen et al., 2011).
These regimes are typically characterized by the Ohnesorge
number, Oh = η/

√
ρRγ , where η is the dynamic viscosity

of the droplet liquid, ρ is the droplet liquid density, R is the
droplet radius, and γ is the surface tension of the droplet. This
dimensionless number measures the dominance of viscosity
over inertia. For Oh ≫ 1, coalescence occurs in the viscous
regime, whereas Oh ≪ 1 indicates the inertial regime. The
corresponding characteristic timescales are the viscous time,
τv = ηR/γ , and the inertial time, τi =

√
ρR3/γ (Eggers et

al., 2025). The coalescence of suspended droplets in a fluid
phase (Eggers et al., 1999; Duchemin et al., 2003; Aarts
et al., 2005; Thoroddsen et al., 2007) and sessile droplets
on a substrate (Ristenpart et al., 2006; Narhe et al., 2008;
Hernández-Sánchez et al., 2012; Lee et al., 2012) have been
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investigated extensively. At the initial stage of coalescence, in
the viscous regime, the radius of the bridge grows as r0 ∼ t
for both spherical droplets and sessile droplets (Hernández-
Sánchez et al., 2012), whereas, in the inertial regime, the radius
of bridge grows following r0 ∼ t1/2 for spherical droplets
(Burton and Taborek, 2007; Paulsen et al., 2011; Xia et
al., 2019) and r0 ∼ t2/3 for sessile droplets on a substrate (Eddi
et al., 2013), which indicates that the geometry of droplets has
a strong effect on the coalescence dynamics. The crossover
from the viscous regime to the inertial regime of the bridge
growth for spherical drops depends on fluid properties and
drop size (Paulsen et al., 2011; Xia et al., 2019).

However, the coalescence of liquid lenses at a liquid layer
has been less investigated (Eggers et al., 2025), despite its
significance in applications such as water harvesting, wet-on-
wet printing and droplets on a lubricated surface. Burton and
Taborek (2007) found that the bridge radius r0 of coalescing
dodecane lenses at a water-air interface grows following a
t1/2 scaling law in the inertial regime, surprisingly the same
as that of suspended droplets. Recently, Hack et al. (2020)
investigated the coalescence of dodecane lenses at a water-air
interface experimentally and applied a theoretical approach
based on the thin-sheet equations to describe the growth of
the bridge height. They found that the growth of the vertical
bridge height h0 follows a h0 ∼ t scaling in the viscous
regime and a h0 ∼ t2/3 scaling in the inertial regime, which
agrees with the theoretical prediction. Very recently, Scheel et
al. (2023) performed color-gradient lattice Boltzmann simu-
lations of the coalescence of liquid lenses over a wide range
of surface tension and viscosity values, successfully capturing
the asymptotic temporal behavior in both the viscous and
inertial limits. Furthermore, Padhan and Pandit (2023) applied
a three-phase Cahn-Hilliard-Navier-Stokes approach to study
the spatiotemporal evolution of the fluid velocity, vorticity, and
the concentration fields in liquid-lens coalescence. The above
experimental and numerical studies are primarily limited to
liquid lenses with small contact angles and only address the
initial stage of coalescence, leaving the coalescence of liquid
lenses with large contact angles and the coalescence dynamics
at later stages largely unexplored.

Here, the coalescence of two low-viscosity liquid lenses
at a liquid-liquid interface is numerically investigated. The
pseudopotential multi-component lattice Boltzmann method
is applied to simulate the fluid phases in two-dimensional
(2D) and three-dimensional (3D). The pseudopotential multi-
component lattice Boltzmann method (LBM) may offer a
significant reduction in computational cost and a simpler
implementation compared to both the color-gradient lattice
Boltzmann and Cahn-Hilliard-Navier-Stokes approaches, but
leaves less flexibility in, for example, the choice of surface
tensions.

The investigation focuses on the impact of contact angles
on the initial coalescence dynamics of liquid lenses, comparing
simulation results with experimental findings and theoretical
analysis based on the thin-sheet equations. In the 2D simula-
tions, results agree quantitatively with experimental results and
theoretical analysis for small contact angles, θ < 40◦, while
at large contact angles, the theoretical model based on the

thin-sheet equations overestimates the bridge growth. For the
3D cases, it is found that that during coalescence, the cross-
section of the bridge is of a spherical cap shape; however, the
contact angle of the cross-section is less than the equilibrium
contact angle at the initial state, which reveals a non-linear
dependence of the growth of the bridge radius and the bridge
height at the initial stage.

2. Method
The LBM is applied to simulate the dynamics of fluids.

In the past decades, the LBM has been used as a powerful
tool for numerical simulations of fluid flows (Succi, 2001;
Krüger et al., 2017) and has been extended to simulate multi-
phase/multicomponent fluids (Shan and Chen, 1993; Cappelli
et al., 2015). Moreover, the LBM has been applied successfully
to investigate viscous and inertial coalescence of suspended
droplets (Gross et al., 2013; Lim et al., 2017) and sessile
droplets on a substrate (Hessling, 2017). The pseudopotential
multicomponent LBM of Shan and Chen (1993, 1994) with
a D3Q19 lattice (Qian et al., 1992) is utilized, and related
details are reviewed in the following. Three fluid components
follow the discretized equation of each distribution function
according to the lattice Boltzmann equation:

f c
i (⃗x+ e⃗i∆t, t +∆t) = f c

i (⃗x, t)+Ω
c
i (⃗x, t) (1)

where i = 1, ...,19. f c
i (⃗x, t) are the single-particle distribution

functions for fluid component c = 1, 2 or 3, e⃗i is the discrete
velocity in the i-th direction, and:

Ω
c
i (⃗x, t) =−

f c
i (⃗x, t)− f eq

i (ρc(⃗x, t), u⃗c(⃗x, t))
τc ∆t (2)

is the Bhatnagar-Gross-Krook collision operator (Bhatnagar
et al., 1954). τc is the relaxation time for component c. Here,
f eq
i (ρc(⃗x, t), u⃗c(⃗x, t)) is a second-order equilibrium distribution

function (Chen et al., 1992), defined as:

f eq
i (ρc,uc) = ωiρ

c
[

1+
ei ·uc

c2
s

− (uc ·uc)

2c2
s

+
(ei ·uc)2

2c4
s

]
(3)

where ωi is a coefficient depending on the direction: ω0 =
1/3 for the zero velocity, ω1,...,6 = 1/18 for the six nearest
neighbors and ω7,...,18 = 1/36 for the nearest neighbors in
diagonal direction. cs = ∆x/(

√
3∆t) is the speed of sound. The

macroscopic variables, densities and velocities are updated
as ρc(⃗x, t) = ρ0 ∑i f c

i (⃗x, t), where ρ0 is a reference density,
and u⃗c(⃗x, t) = ∑i f c

i (⃗x, t )⃗ci/ρc(⃗x, t), respectively. The single
relaxation time scheme is employed in this work. While the
multi-relaxation time scheme (Fan, 2010) can enhance stability
for high Reynolds number or low-viscosity flows, it incurs
a higher computational cost due to the required moment-
space transformations. Given the low Reynolds numbers and
moderate viscosities considered here, single relaxation time
provides a stable and computationally efficient alternative.

LBM can be treated as an alternative solver of Navier-
Stokes equation in the limit of small Knnudsen and Mach
numbers (Succi, 2001). In the simulations, the lattice constant
∆x, the timestep ∆t, the reference density ρ0, and the relaxation
time τc are chosen to be unity, which results in a kinematic
viscosity νc = 1/6 in lattice units.
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In the pseudopotential multicomponent LBM introduced by
Shan and Chen (1993), a mean-field interaction force between
fluid components c and c′ is introduced, written as:

F⃗c
C (⃗x, t) =−Ψ

c(⃗x, t)∑
c′

gcc′ ∑
x⃗′

Ψ
c′ (⃗x′, t)(⃗x′− x⃗) (4)

in which x⃗′ denote the nearest neighbours of lattice site x⃗ and
gcc′ is a coupling constant determining the surface tension.
Ψc(x, t) is called “effective mass”, defined as (Shan and
Chen, 1993, 1994):

Ψ
c(⃗x, t)≡ Ψ(ρc(⃗x, t)) = 1− e−ρc (⃗x,t) (5)

This effective mass formulation ensures that at low den-
sities it approximates the density ρc itself, while at high
densities it asymptotically approaches a saturation limit (Chen
et al., 2014). The saturation behavior prevents the collapse of
the high-density phase, thereby enhancing numerical stability
in simulations.

The force F⃗c
C (⃗x, t) is then incorporated into the lat-

tice Boltzmann equations by adding a shift ∆⃗uc(⃗x, t) =
τcF⃗c

C (⃗x, t)/ρc(⃗x, t) to the velocity u⃗c(⃗x, t) in the equilibrium
distribution function f eq

i . The pseudopotential multicomponent
LBM is a diffuse interface method with an interface width
of ≈ 5∆x, which elegantly removes the stress singularity at
the moving contact line usually occurring in sharp-interface
models. It is noted that in the pseudopotential LBM, the
surface tension is governed by the interaction parameter gcc′

in Eq. (4) and is calculated by the Young-Laplace equation.
For a spherical droplet of radius R immersed in another fluid,
the Young-Laplace equation, γ = R∆P/2, relates the pressure
difference ∆P over the interface between two fluids to the
surface tension γ .

Simulations are performed in 2D and 3D. For simplicity
and numerical stability, the three fluid components are initial-
ized with equal viscosity and density.

Fluid 1

Fluid 2

Fluid 3
γ12

γ13

γ23

θ1

θ2
R

h(r)

r

Fig. 1. Schematic of a single liquid lens (fluid 3) at an interface
between fluid 1 and fluid 2 in the equilibrium state.

3. Results and discussion

3.1 Single liquid lens
The study begins with the spreading of a single liquid

lens at a fluid-fluid interface to validate its equilibrium shape,
as illustrated in Fig. 1. γi j is the surface tension at the
interface between fluid i and fluid j (i, j = 1, 2, 3). The base
radius of the lens is R, and the lens height is h(r) along the
radial coordinate. The contact angles of the upper and lower
parts of the lens are θ1 and θ2, respectively. The equilibrium
shape of a liquid lens has been investigated theoretically and
experimentally, and has been used as a classical benchmark
problem to test the numerical approaches for three-phase
flows (Burton et al., 2010; Zheng and Zheng, 2019; Yuan et
al., 2020; Ravazzoli et al., 2020).

When a spherical droplet is initially located at a fluid-
fluid interface, it undergoes deformation driven by surface
tension to reach its equilibrium state. In the case where gravity
is negligible, the liquid lens assumes a spherical cap shape,
dominated by surface tension. At the three-phase contact
line, the surface tensions obey the so-called Neumann’s law
γ⃗12+ γ⃗13+ γ⃗23 = 0 and after some mathematical manipulations,
the following is obtained:

cosθ1 =
γ2

13 − γ2
23 + γ2

12
2γ12γ13

, cosθ2 =
γ2

23 − γ2
13 + γ2

12
2γ12γ23

(6)

where γi j = |⃗γi j|. The height profiles of the upper and lower
parts of the lens along the radial coordinate follow:

hup(r) =

√(
R

sinθ1

)2

− r2 −Rcotθ1 (7)

hlo(r) =

√(
R

sinθ2

)2

− r2 −Rcotθ2 (8)

The simulations utilize a 2D system of size 512 × 264.
A wall is placed at the bottom of the system, and periodic
boundary conditions are applied at the remaining boundaries.
A spherical droplet of radius R0 = 80 is initialized at the
center of a fluid-fluid interface and allowed to equilibrate. The
densities of the three fluids are set to ρi = 0.7. The surface
tension ratios are varied to γ12 : γ13 : γ23 = 1 : 1 : 1, γ12 : γ13 :
γ23 = 1.5 : 1 : 1 and γ12 : γ13 : γ23 = 1 : 1.5 : 1. In the case of
γ12 : γ13 : γ23 = 1 : 1 : 1, the contact angles are θ1 = θ2 ∼ 60◦,
as shown in Fig. 2(a). For γ12 : γ13 : γ23 = 1.5 : 1 : 1, the lens
spreads more at the fluid interface to reduce the total surface

Fig. 2. Snapshots of a single liquid lens in equilibrium state obtained in simulations for different combinations of surface
tensions: (a) γ12 : γ13 : γ23 = 1 : 1 : 1, (b) γ12 : γ13 : γ23 = 1.5 : 1 : 1, and (c) γ12 : γ13 : γ23 = 1 : 1.5 : 1.
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Fig. 3. The height profile of the upper half of a single liquid
lens in equilibrium state for different surface tension ratios.

energy (Fig. 2(b)), resulting in lower contact angles θ1 = θ2 ∼
42◦. When γ12 : γ13 : γ23 = 1 : 1.5 : 1, to minimize the total
surface energy, the lens sinks more in the lower fluid (Fig.
2(c)) and the contact angles are θ1 ∼ 42◦ and θ2 ∼ 97◦. After
equilibrium, the height of the liquid lens is measured as a
function of the radial coordinate. The simulation results are
then compared with the analytical solution Eq. (7) in Fig.
3. Determining the exact position of the diffuse interface is
challenging; here, the interface position is defined as corre-
sponding to zero density difference between the lens liquid
and the surrounding liquid, e.g., ρ2 −ρ3 = 0. The simulation
results agree quantitatively with the analytical solution Eq. (7),
which demonstrates that the LBM can accurately capture the
equilibrium interface shape of a single liquid lens.

3.2 Two liquid lenses-2D
Here, the coalescence dynamics of liquid lenses at a fluid-

fluid interface are considered, as illustrated in Fig. 4. The
lenses are up-down symmetric, and the contact angles are
θ1 = θ2 = θ . The maximal bridge height is H, and the bridge
height at the center is h0. L is the distance between the
far ends of the two lenses. For the coalescence of liquid
lenses, the crossover length scale and time scale from the
viscous to the inertial regime are determined as (Hack et
al., 2020) hc ∼ η2/(ργ2) and tc ∼ η3/(ργ2θ 2), where η is
the dynamic viscosity of lens liquid, and γ is the surface
tension of the lens with respect to its surrounding fluids. Using
the parameters in the simulations, hc ∼ 0.4 lattice units and
tc ∼ 2 timesteps are obtained, indicating that all simulations
are in the inertial regime. For liquid lenses with small contact
angles, assuming the flow inside the lenses is dominant and
parallel to the vertical plane, the dynamics at the initial
stage of coalescence are described by 2D thin-sheet equations
(Erneux and Davis, 1993; Scheid et al., 2012; Eggers and
Fontelos, 2015; Hack et al., 2020), written as:

ht +(uh)x = 0, ρ(ut +uux) = γhxxx +4η
(uxh)x

h
(9)

which represent mass conservation and momentum conserva-
tion, respectively. Here, h(x, t) describes the shape of the bri-

L

h0
Hθ

Fig. 4. Schematic of the side view of two coalescing lenses at
a fluid-fluid interface. The lenses are up-down symmetric, and
the contact angle is θ . The maximal bridge height is H, and
the bridge height at the center is h0. L is the distance between
the far ends of the two lenses.

dge and u(x, t) is the horizontal velocity of liquid inside the
lens. The lower indices denote spatial and temporal derivatives.

When inertia dominates over viscosity, the above thin-
sheet equations are simplified in the inviscid limit to (Hack
et al., 2020):

ht +(uh)x = 0, ρ(ut +uux) = γhxxx (10)
Hack et al. (2020) found experimentally that the bridge

growth of two equally sized liquid lenses shows a self-
similar dynamics, which motivated them to solve Eq. (10) by
introducing similarity solutions written as:

h(x, t) = ktαH (ξ ), u(x, t) =
αk
θ

tβ U (ξ ) (11)

where H and U are the similarity functions for the bridge
profile and horizontal velocity inside the lenses, and k is a
parameter dependent on surface tension, contact angle and
density. The parameter ξ = θx/(ktα) is chosen to ensure that
h(x, t) ≃ θx far away from the bridge. By inserting Eq. (11)
into Eq. (10), they obtained α = 2/3, β =−1/3. By satisfying
certain boundary conditions, the time evolution of the bridge
height is written as (Hack et al., 2020):

h0 = kt2/3 =

(
9Kiγθ 4

2ρ

)1/3

t2/3 (12)

in which Ki = 0.106 is obtained by numerically solving the
boundary value problem. The bridge profile and horizontal
velocity profile can be written as (Hack et al., 2020):

h(x, t) = h0H (ξ ), u(x, t) =
2h0

3θ t
U (ξ ) (13)

Simulations of liquid lens coalescence in 2D are conducted.
To capture the initial stage of coalescence where the bridge
growth is not affected by the finite height of the lens, a
sufficiently large initial height of the lens is required. A
spherical cap-shaped lens is initialized at the fluid interface
with maximal height H = 1,000 and contact angles θ = 22◦,
35◦, 59◦, respectively. It is noted that the contact angles were
measured after the initially configured single-droplet lens had
relaxed to equilibrium. After reaching equilibrium, the lens is
numerically mirrored and located at a distance of ∼ 2 lattice
nodes from the original one.. It is noted that the initial distance
between two lenses has no significant influence on coalescence
dynamics (Hessling, 2017), and coalescence is predominantly
driven by surface tensions. Given that the lenses approach with
negligible relative velocity v, the associated Weber number
We = ρv2/(γR) is much less than 1, which favors coalescence
over phenomena like bouncing or breakup. The surface tension
during coalescence remains constant, as the system is both
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Fig. 5. Time sequence of the coalescence process of liquid lenses in a 2D system obtained in the simulations: (a) t/T = 0, (b)
t/T = 0.019, (c) t/T = 0.066, (d) t/T = 0.094, (e) t/T = 0.176, and (f) t/T = 1.

 0.1

 0.2

 0.3

 0.4

 0  0.04  0.08  0.12  0.16
t/(ρH3/γ)

h 0/ H

1/2

θ=90°
θ=59°

θ=35°
θ=22°

(a)

 0

 2

 4

 6

 8

 10

-10 -5  0  5  10

h/
h 0

θx/h0

tn=0.056
tn=0.033
tn=0.010

exp
theory

(b)  1.5

 1

 0.5

 0

-0.5

-1

-1.5
-20 -10  10  20

u/
u 0

 0
θx/h0

.2

tn=0.022
tn=0.035

(c)

theory

tn=0.009

Fig. 6. (a) The time evolution of bridge height h0 for different contact angles, (b) rescaled bridge profile for lenses with contact
angle θ = 35◦ at different times tn = t/(ρH3/γ)1/2, and (c) rescaled horizontal velocity profile corresponds to different times
tn = t/(ρH3/γ)1/2.

isothermal and free of surfactants.
The simulation captures the coalescence of two lenses,

as illustrated in Fig. 5. The timestep is normalized by the
total duration T , defined as the time from initial lens contact
(Fig. 5(a)) to the formation of a single lens with a relaxed
equilibrium shape (Fig. 5(f)). The color represents the density
difference between the lens and the lower liquid. Upon contact
(Fig. 5(a)), a fast-growing bridge is formed connecting the
two lenses (Figs. 5(b) and 5(c)), while the distance L between
the far ends of the two lenses remains almost constant. This
indicates that at the initial stage of the coalescence, a strong
velocity field is located near the bridge center, whereas the
influence of coalescence at the far field is negligible. When the
bridge height grows to be comparable to the maximal height
H, the lens retracts (Figs. 5(c)-5(e)), and finally a single lens is
formed at the interface which relaxes to its equilibrium shape
(Fig. 5(f)).

The time evolution of the vertical height of the bridge
center h0 is shown in Fig. 6(a) for different contact angles. The
bridge grows faster with increasing contact angle. For small
contact angles θ < 40◦, the simulation results (symbols) agree
quantitatively with the theoretical analysis Eq. (12) (solid
lines). For a large contact angle θ = 59◦, the similarity solution
based on the thin-sheet equations overestimates the bridge

growth. The thin-sheet equations are based on the lubrication
theory, which assumes that the film thickness (normal to the
surface) is much smaller than the characteristic length scale
along the surface. Consequently, these equations break down
at large contact angles, where the interface height violates
the underlying thin-film assumption. It is noted that the LBM
method solves the Navier-Stokes equations and is valid for the
whole range of contact angles. In the case of a contact angle of
θ = 90◦, the coalescence of two suspended spherical droplets
in another liquid is simulated. Interestingly, the theoretical
prediction based on the thin-sheet equations underestimates the
bridge growth-contrary to that at a contact angle of θ = 59◦.

The bridge profiles of coalescing liquid lenses are shown
in Fig. 6(b) at a contact angle θ = 35◦ for different times
tn = t/(ρH3/γ)1/2. The horizontal coordinate is rescaled by
θ/h0 and the vertical coordinate by h0, respectively. All the
bridge profiles collapse onto a universal curve, verifying the
self-similar dynamics at the early stage of coalescence. The
simulation results (symbols) agree quantitatively with exper-
imental results (solid line) and theoretical analysis (dashed
line) (Hack et al., 2020). It is noted that the simulation results
slightly deviate from the experimental results at θx/h0 <−3,
possibly because the neighboring lenses are not of exactly
equal size in experiments.
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Fig. 7. Time sequence of the top-views of two coalescing lenses in 3D: (a) t/T = 0, (b) t/T = 0.088, (c) t/T = 0.165, (d) t/T
= 0.251, (e) t/T = 0.326, and (f) t/T = 1.

Near the bridge center, the horizontal velocity profiles u are
shown in Fig. 6(c) for different times tn = t/(ρH3/γ)1/2. The
horizontal coordinate is rescaled with θ/h0 and the vertical
coordinate with the maximal horizontal velocity u0(tn) at its
corresponding time tn. The velocity profiles ux also collapse to
a single curve, indicating self-similar dynamics. In contrast to
the theoretical prediction Eq. (13) (solid line), the simulations
do not exhibit strong oscillations of the horizontal velocity,
which is likely due to the presence of viscous damping. In
contrast, the theoretical analysis assumes an inviscid limit.

3.3 Two liquid lenses-3D
Here, simulations of liquid lens coalescence are carried out

in three dimensions. The computational cost is extremely high
for simulating lenses with an initial height H ∼ 1,000. There-
fore, to reduce computational cost, a spherical cap-shaped lens
is initialized at the fluid interface with maximal height H = 100
and contact angles θ = 43◦,60◦, respectively. The system is
allowed to equilibrate, after which it is mirrored and positioned
next to the initial lens at a distance of approximately 2 lattice
units. Fig. 7 shows the top-view of the coalescence process
of two lenses obtained in the simulations. Similar to the side-
views of the 2D simulations (Fig. 5), the bridge connecting two
lenses grows fast initially (Figs. 7(a)-7(c)). At a later stage,
the lens retracts (Figs. 7(c)-7(e)), followed by oscillations and
finally relaxes to its equilibrium shape (Fig. 7(f)).

For contact angles of θ = 60◦ and θ = 43◦, the time
evolution of the bridge height h0 and radius r0 is presented
in Fig. 8(a). The vertical height of the bridge grows faster
with a larger contact angle, similar to what was observed in
the 2D simulations (see Fig. 6(a)). Interestingly, the horizontal
radius of the bridge grows at the same speed for both contact
angles in the initial stage, which indicates that the bridge
radius growth is not affected by the initial contact angle
of the lenses, and the growth of the bridge radius is not a
linear function of the growth of bridge height, in contrast to
that observed in coalescing sessile droplets on a substrate.
A possible explanation is that due to the no-slip boundary
condition, the coalescence speed of sessile droplets on a
substrate is relatively slow, giving sufficient time for the cross-

section of the bridge to relax immediately to a spherical
cap shape with a corresponding equilibrium contact angle.
However, the coalescence speed of liquid lenses at a fluid-
fluid interface is significantly faster, and the bridge height and
radius grow in a non-coupled manner, resulting in a non-linear
dependence of bridge radius and height growth. Although the
simulations were limited to contact angles of θ = 43◦ and 60◦

due to computational resource constraints, the initial growth
of the bridge radius is expected to be independent of the
contact angle across a wider range. This expectation is based
on previous work, which shows that the growth of the width
of coalescing lenses agrees with studies for freely suspended,
respectively spherical droplets (Scheel et al., 2023). If one
considers a horizontal cross-section through the liquid lenses,
their coalescence resembles that of freely suspended droplets
with an effective contact angle of 90◦. In this view, the contact
angle observed in the vertical cross-section plays a negligible
role in the initial stage.

Next, the shape of the cross-section of the bridge is
explored. Fig. 8(b) depicts the upper quarter of the lens for
different times tn obtained in the simulations (symbols). The
shape of the cross-section of the bridge can be accurately
described by a spherical cap (solid lines), dominated by surface
tensions. However, the contact angles of the cross-section
obtained by fitting the shape with a spherical cap function vary
over time. Fig. 8(c) shows the time evolution of the contact
angle θc of the cross section of the bridge. The contact angle
θc is less than the equilibrium contact angle θeq and increases
rapidly in the initial stage, which indicates that the bridge
radius grows faster than the bridge height.The contact angle
reaches a plateau at the intermediate stage, demonstrating a
linear relation of the growth of bridge height and bridge width,
r0/h0 = cosθc/(1− sinθc). Afterwards, due to oscillation of
the lens, the contact angle decreases, followed by an increase.
Finally, the contact angle θc of the cross-section of the bridge
arrives at the equilibrium contact angle.

4. Conclusion
The inertial coalescence of liquid lenses over a wide

range of contact angles is numerically investigated using the
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Fig. 8. (a) the time evolution of bridge height h0 and radius r0 for different contact angles, (b) the shape of the cross-section
of the bridge at different times, and (c) the time evolution of contact angle θc of the bridge cross section.

pseudopotential LBM. While prior work has focused largely
on liquid lenses with small contact angles and only addresses
the initial stage of coalescence, this work extends the analysis
to the coalescence of liquid lenses with large contact angles
and the coalescence dynamics at later stages.

The simulations in 2D successfully capture the self-similar
dynamics of both the bridge and velocity profiles, showing
quantitative agreement with experimental observations and a
theoretical framework based on thin-sheet equations. Further-
more, the simulation results demonstrate that the thin-sheet
equations are applicable to describe the quantitative behavior
of bridge growth for small contact angles approximately up to
θ < 40◦. In the 3D case, the bridge height is found to grow
faster with a larger contact angle, while the growth of the
bridge radius is independent of the contact angle at the initial
stage. The contact angle of the cross-section of the bridge
increases rapidly in the initial stage. It reaches a plateau at the
intermediate stage, indicating a transition from a non-linear to
a linear dependency between the growth of bridge height and
bridge width. A theoretical model capable of predicting the
transition’s critical conditions, such as the critical bridge radius
or time, and describing the full bridge growth dynamics is not
yet available. Developing such a model extends beyond the
scope of the current work and represents a valuable direction
for future research.

The pseudopotential LBM has been widely applied to study
binary fluid component systems (Liu et al., 2016; Krüger et
al., 2017; Xie et al., 2025), and the result demonstrate its
applicability to ternary fluid systems, potentially inspiring its
use for investigating printing and coating multi-component
solutions for functional material synthesis in catalytic and
electronic applications (Steinberger et al., 2024; Vinodh et
al., 2024). For instance, in wet-on-wet inkjet printing, the
final deposition pattern is affected by the competition between
coalescence and evaporation timescales (Wijshoff, 2018). Our
findings provide an estimate of the coalescence timescale,
thereby offering practical guidelines for optimizing drying
conditions.
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