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Abstract:
The influence of different reservoir spaces in shale reservoirs on imbibition recovery is
a hot spot for improving shale oil recovery. However, the research on the influence of
different chemical reagents on the recovery factor of different scale pores is limited, and
the influence mechanism of shale imbibition recovery factor under the action of different
media has not been systematically studied. Therefore, this study takes the Gulong shale
oil reservoir as the research object, carries out imbibition experiments combined with
nuclear magnetic resonance testing under different injection fluid conditions, quantifies
the contribution of shale pores of different scales to imbibition recovery under different
injection media conditions, and analyzes the influence of injection media types on
imbibition recovery. The results show that the average contribution rate of different types
of pores was in the order of interlayer clay (47.6%) > mesoscale pores (32.7%) > small
pores (17.3%) > large pores (2.6%). The total imbibition recovery of shale with millimeter-
scale sandy laminae was ranked as alkali solution (61.50%) > acid solution (60.92%) >GJ
surfactant (39.79%)> distilled water (32.92%)>guanidine gum (30.38%) , and the total
imbibition recovery of laminated shale was ranked as GJ surfactant (39.1%) > slick water
(38.0%) > guanidine gum (34.7%) > distilled water (29.2%).

1. Introduction
Shale oil resources have significant potential and exhibit

obvious zoning and differentiation (Zhang et al., 2023b). Shale
oil reservoirs in the northern Songliao Basin are abundant
and have unique geological characteristics. For these reser-
voirs, conventional reservoir characteristic studies cannot meet
the needs of precise reservoir evaluation (Liu et al., 2019).
Controlled by sedimentary conditions, the Songliao Basin

developed different types of shale oil: interbedded type and
shale type (Lee et al., 2020). The interbedded type has been
developed on a large scale and the interlayer type exploration
has achieved breakthroughs, and shale type is currently the
main research direction (Ma et al., 2019). Gulong shale has
excellent storage performance, with a variety of storage space
types and unique pore types and permeability characteristics
(Mohagheghian et al., 2020). Nanoscale matrix pores and foli-
ated fractures are the main storage spaces, primarily including

∗Corresponding author.
E-mail address: weijianguang@163.com (J. Wei); law8912@163.com (A. Wang); dq_wangrui@petrochina.com.cn (R. Wang);
yyainngg@126.com (Y. Yang); zhaoxiaoqing@nepu.edu.cn (X. Zhao); zhxf_cup@163.com (X. Zhou).
2709-2119 © The Author(s) 2025.
Received February 20, 2025; revised March 16, 2025; accepted April 9, 2025; available online April 14, 2025.

https://orcid.org/0009-0009-6118-5436
https://doi.org/10.46690/capi.2025.04.03


Wei, J., et al. Capillarity, 2025, 15(1): 12-24 13

bedding fractures (clay diagenetic fractures and organic matter
contraction fractures) and organic/intergranular pores (Naveen
et al., 2018; Sakurovs et al., 2018).

The traditional view is that North American marine shale
oil is a kind of light oil and condensate oil (Sun et al., 2017;
Ratnakar and Dindoruk, 2019; Jiang et al., 2023). In contrast,
the overall degree of thermal evolution results in most of the
oil being heavier in terms of quality (Roslin et al., 2020;
Sun et al., 2023), leading to its low fluidity (Saghandal et
al., 2023). However, according to the oil testing data, it has
low density, low viscosity, high formation pressure, and strong
flowing ability (Sakurovs et al., 2018; Gao et al., 2024). The
surface density of the Qijia-Gulong area is generally less than
840 kg/m3, and the overall viscosity of formation crude oil
is less than 0.8 mPa·s (Shelare et al., 2023). The quality of
crude oil in Ping 1 well is significantly better than that of
conventional crude oil (Tang et al., 2016; Gao et al., 2025a).
In addition, the petroleum surpassing effect is significant, with
the movable oil index generally exceeding 100 mg/g and
ranging from 200 to 400 mg/g in the lower part of the first
and second sections (Wang et al., 2022). As the burial depth
increases, the movable oil index rises significantly, indicating
that the quality of Gulong shale oil is excellent and has
great movable potential (Yakasai et al., 2021). Nano-pores are
characterized by strong internal solid-liquid interactions and
significant confinement effects on the fluid inside them (Sun
et al., 2018; Yang et al., 2022). This is mainly characterized as
the strong capillary pressure effect (Zhang et al., 2020), which
results in significant differences in the fluid properties and bulk
phases (Xiao et al., 2022). Many scholars have demonstrated
through experimental studies such as nanoscale fluidic chips
and differential scanning calorimetry that the bubble point
pressure in nanoscale pores is smaller than that in the bulk
state (Zhou et al., 2023). As the pore size decreases, the degree
of deviation also gradually increases (Zhou et al., 2016; Gao et
al., 2025b). However, because of the unconventional character-
istics of rocks and the limitations of experimental equipment
(i.e., it is difficult to produce underground nanoscale fluidic
chips or nanoscale porous media models), conducting phase
behavior experimental research is rather challenging (Zhu et
al., 2020). With the advancement of computational science,
simulation methods have been widely used to compensate
for the shortcomings of experiments (Maghzi et al., 2012;
Zhong et al., 2019; Zhang et al., 2023a; Zheng et al., 2023;
Wei et al., 2024). Among them, data on the transformation
of critical properties of pure substances can be obtained
through molecular dynamics simulations (Liu et al., 2023b).
However, the above methods cannot describe the essence of
critical property transformation through state equations (Xiang
et al., 2011; Tao et al., 2023). Therefore, researchers are
committed to developing equations of state that can describe
the nano-confinement effect (Liu et al., 2020b). On the basis of
simulation research, some scholars have found that in addition
to the experimental understanding (Liu et al., 2021; Chen et
al., 2025), the nano-pore confinement effect can promote gas-
phase condensation and reduce liquid density and viscosity
(Liu et al., 2020a). Nonetheless, current research about the
nano-effect on fluid properties and oil and gas mass transfer

mainly focuses on single-phase or two-phase oil and gas (Xu
et al., 2023). In addition, existing models are mostly applicable
to Eagle Beach and Bakun, making it difficult to accurately
describe the phase behavior (Meng et al., 2023). Besides, the
Gulong shale reservoir has a multi-scale storage space (Yu et
al., 2023), with a large number of micrometer scale bedding
fractures and millimeter-scale pressure fractures in addition
to the widely distributed nanoscale pores (Meng et al., 2023;
Lu et al., 2025). Under the influence of the nano-confinement
effect, the distribution of fluid components in multi-scale space
exhibits spatial non-uniformity (Liu et al., 2023a), leading
to complex changes in fluid properties and interphase mass
transfer laws, thereby affecting the supply and production
characteristics of oil from matrix pores to fractures in the
production process (Liu et al., 2020c, 2023b; Faramarzi et
al., 2025). Shale oil reservoirs exhibit unique behaviors and
responses to imbibition due to their unique pore structure and
complex physicochemical properties. Imbibition refers to the
process of fluid passing through solid media under capillary
force (Zhao et al., 2022; Zheng et al., 2025). Firstly, as small
pores and fractures in shale oil reservoirs provide appropri-
ate channels, crude oil can be extracted through imbibition.
This natural imbibition process helps to increase the fluidity
(Wang et al., 2025). Secondly, via imbibition, some chemical
substances dissolved in the fluid can enter the shale pores,
undergo chemical reactions with the rock, and change the pore
structure and physical properties. This in turn improves the
permeability and porosity of the reservoir, further increasing
the oil recovery rate. Besides, the imbibition effect also helps
to reduce the residual oil saturation, further tapping into the
reservoir’s productivity potential. However, imbibition is also
affected by fluid properties and environmental factors (Liu et
al., 2023c; Yuan et al., 2023).

Therefore, this study takes the Gulong shale oil reservoir
as the research object, carries out imbibition experiments com-
bined with Nuclear Magnetic Resonance (NMR) testing under
different injection fluid conditions, analyzes the influence of
injection media types on imbibition recovery, and quantifies
the contribution of shale pores of different scales to imbibition
recovery under different injection media conditions.

2. Experimental section

2.1 Materials and equipment
Acid solution: 5 wt.% HF+12 wt.% HCl; Alkaline solution:

NaOH (pH = 13); Slick water and guanidine gum; Absorbent
solution: GJ surfactant. Two types of composite fracturing
fluids were used, which are composed of slick water filtrate
and acid solution (5 wt.% HF and 12 wt.% HCl), and absorbent
solution (GJ surfactant) and acid (5 wt.% HFand 12 wt.%
HCl), respectively. The experimental temperature was 110 ◦C,
and the experimental pressure was 37 MPa. All related data
are presented in Table S1 in Supplementary file.

The instruments are shown in Fig. S1 in Supplementary
file.
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Table 1. Recovery rate of imbibition under different injection medium conditions.

No. Injection medium Core mass (g) Saturated oil mass (g) Saturated oil porosity (%) Recovery rate (%)

4-10-7 Guanidine gum 46.9506 48.2975 8.65 30.38

2-2-4 Distilled water 50.324 51.8565 9.20 32.92

2-3-1 GJ surfactant 48.6861 50.1198 8.94 39.79

1-17-6 Acid solution 70.6995 72.7648 8.69 60.92

4-11-6 Alkali solution 46.1768 47.6955 9.90 61.50
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Fig. 1. Oil recovery rates and saturated oil porosities: (a) Recovery rates under different chemical agents and (b) saturated oil
porosities under different chemical agents.

2.2 Methods
Referring to the NMR testing standards “Laboratory Mea-

surement Specification for NMR Parameters of Rock Samples”
SYT 6490-2014 and “Core Analysis Methods” GB/T 29172-
2012, specific steps for shale oil permeability and absorption
experiments have been developed, as follows:

1) Configure external fluids and use filter paper to filter and
prepare for the experiment.

2) After drying the core at 110 ◦C for 5 days, weigh it and
perform NMR testing.

3) Using a gripper, set a confining pressure of 2 MPa, apply
2 days of vacuum, then saturate with shale oil. Keep
temperature at constant 110 ◦C for 1 day.

4) At a constant 110 ◦C, pressurize the core sample to 30/10
MPa to conduct the imbibition experiment. After 15 days,
take the core out for NMR.

5) Clarify the contributions of shale oil saturation, imbibi-
tion recovery rate, different pore sizes, and different types
of external fluids to the imbibition recovery rate.

3. Results and discussion

3.1 Experimental results of stimulation
3.1.1 Shale with millimeter-scale sandy laminae

The recovery rates of shale under different injection media
conditions calculated based on NMR testing data are presented
in Table 1 and Fig. 1. Further comparison of the imbibition
recovery rates of guanidine gum, distilled water and GJ surfac-
tant for shale with millimeter-scale sandy laminae reveals that
under the conditions of stimulation, the total shale recovery

rate was in the order of GJ surfactant (39.1%) > guanidine
gum (34.7%) > distilled water (29.2%).

From Fig. 1, it can be found that after injecting different
media into the samples, the sample treated with alkaline
solution has the highest recovery rate of 61.50% through
imbibition. The next highest stimulation recovery rate results
from acid solution at 60.92%. The stimulation recovery rates
of samples treated with these two types of media were much
higher than those treated with the other three media. The
sample treated with guanidine gum had the lowest imbibition
recovery rate at only 30.38%, which was 31.12% lower than
that of the sample treated with alkaline solution, 32.92% lower
than that of distilled water and 39.79% lower than that of GJ
surfactant. The saturated oil porosity of the sample treated with
alkaline solution was the highest at 9.90%, followed by the
sample treated with distilled water. The porosity of saturated
oil after acid treatment was the lowest at only 8.69%.

3.1.2 Laminated shale

The recovery rates of rich bedding shale under different
injection media conditions calculated based on NMR testing
results are shown in Table 2 and Fig. 2.

From Table 2 and Fig. 2, it can be found that: (a) The
total recovery rate of single agent imbibition is in the order
of GJ surfactant (39.1%) > slick water (38.0%) > guanidine
gum (34.7%) > distilled water (29.2%); (b) the synergistic
effect of slick water and acid solution improves the imbibition
efficiency of slick water by 4.52% in the order of slick
water + acid solution (42.52%) > slick water (38.0%); (c)
the synergistic effect of GJ surfactant and acid improves GJ
imbibition recovery rate by 11.05% in the order of GJ surfa-
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Table 2. Recovery rates of laminated shale under different injection media conditions.

No. Injected medium Length
(cm)

Diameter
(cm)

Dry core
sample mass (g)

Saturated oil
mass (g)

Saturated oil
porosity (%)

Recovery
rate (%)

2-2-8 Slick water 4.27 2.5 50.3448 1.453 8.61 38.02

1-19-4-1 Guanidine gum 4.14 2.48 47.5719 1.7099 10.61 34.71

1-18-5 Distilled water 4.27 2.5 50.6061 1.3319 7.89 29.23

4-13-1 GJ surfactant 6.05 2.5 70.8645 2.0203 8.45 39.12

1-12-3 Slick water + acid solution 6.54 2.50 77.9873 2.5465 9.85 42.52

1-18-4 GJ surfactant + acid solution 4.16 2.49 49.4377 1.4241 8.73 50.15
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Fig. 2. Relationship between recovery rate/contribution rate and different pores under different injection conditions: (a) Slick
water and (b) GJ surfactant.
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Fig. 3. Total recovery and contribution of different pore scales.

ctant + acid solution (50.15%) > GJ surfactant (39.1%); (d)
the enhanced oil recovery of slick water is more significant in
the clay interlayer and small pores, while its ability to enhance
oil recovery in mesoscale and macroscale pores is lower than
that of slick water + acid solution. For the overall increase
in recovery capacity, the combination of slick water + acid
solution is more effective than slick water alone.

3.2 Effect of pore scale on imbibition rate
From Fig. 3, it can be found that the effect of pore scale

is in the order of interlayer clay (47.6%) > mesoscale pores
(32.7%) > small pores (17.3%) > large pores (2.6%). Secondly,
under different pore size conditions, the enhanced oil recovery
ability of different external fluids varies. Therefore, for shale
oil reservoirs with different pore characteristics, to improve the

recovery efficiency, different external fluids can be selected
to enhance oil recovery; for reservoirs with developed clay
interlayer pores, slick water can be used as much as possible;
for reservoirs with small pore development, Gulong No. 1
lotion is recommended; for shale oil with developed mesoscale
pores, guanidine gum can be commonly used; for shale oil
reservoirs with large pore development, Gulong No. 1 lotion
can be commonly used.

3.3 Analysis of NMR test results
3.3.1 Guanidine gum imbibition results

The results of guanidine gum imbibition in core 4-10-7 are
shown in Table 3, Figs. 4 and 5. From these data, it can be
found that the total recovery rate of guanidine gum in core
4-10-7 is 30.38%, with clay interlayer, small pore, medium
pore, and large pore being 7.05%, 5.61%, 16.27%, and 1.45%.
The guanidine gum imbibition is 32.55%. Among them, the
average values of clay interlayer and small/medium/large pores
are 10.56%, 5.87%, 15.17%, and 0.96%.

It can be seen from Figs. 4 and 5 that the core samples
treated with guanidine gum have the highest increase in
saturated oil between clay layers, accounting for 52.08%. The
increment of saturated oil in macroscale pores is the smallest,
accounting for only 6.15%, which is 45.93% less than that
of saturated oil between clay layers. The proportion of oil
produced by imbibition in the mesoscale pore is the highest.
On the other hand, the recovery rate of small pores is the
highest, reaching 79.49%. The porosity recovery rate between
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Fig. 4. NMR testing results of shale core for different states of core 4-10-7: (a) Dry sample, (b) saturated oil and (c) guanidine
gum imbibition.
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Fig. 5. Interpretation data of guanidine gum imbibition in core
4-10-7.

clay layers is the lowest at only 13.54%. Among the com-
ponents of total recovery rate, mesoscale pores have the
highest proportion, while macroscale pores have the lowest
total recovery rate at only 1.05%.

The results of guanidine gum imbibition in core 1-19-4-1
are presented in Table 3 and Fig. 6. From these data, it can
be found that the total recovery rate is 34.71%. Among them,
those of the clay interlayer and small/mesoscale/macroscale
pores are 14.07 %, 6.12 %, 14.07 %, and 0.46 %, respectively.

3.3.2 Distilled/slick water imbibition results

The results of distilled water imbibition in core 2-2-4 are
shown in Table 3, Figs. 7 and 8. From these data, it can
be found that, firstly, the total oil recovery rate of core 2-
2-4 by distilled water imbibition is 32.92%. Among them,
those of the clay interlayer and small/mesoscale/large pores
are 19.15%, 3.86%, 9.09%, and 0.83%. Secondly, the average
total recovery rate of distilled water imbibition is 31.08%. The
average values of clay interlayer, small pores, mesoscale pores,
and macroscale pores are 17.20%, 4.22%, 9.16%, and 0.56%,
respectively.

From Figs. 7 and 8, it can be seen that, firstly, the saturated
oil increment between clay layers is the highest in the core
samples treated with distilled water. The lowest proportion
of macroscale pores is 66.94%, which is 62.12% higher than
that of macroscale pores. Oil production through imbibition
between clay layers is also the highest, accounting for 58.16%,
which is 55.65% higher than that by imbibition and extraction
through large pores. The pore recovery rate of small pores is
68.29%, accounting for the highest proportion. Secondly, the

porosity recovery rate of mesoscale pores is 40.24%, while the
proportion of large pores is the lowest at only 17.14%. The
proportion of interlayer clay in the total recovery rate is the
highest, whereas the contribution of macroscale pores to the
total recovery rate is only 0.83%.

The results of distilled water imbibition in core 1-18-5
are presented in Table 3 and Fig. 9. From these data, it can
be found that total recovery rate of core 1-18-5 by distilled
water imbibition is 29.23%. Among them, those of the clay
interlayer and small/mesoscale/macroscale pores are 15.24%,
4.62%, 9.23%, 0.28%.

The results of slick water imbibition in core 2-2-8 are
shown in Table 4 and Fig. 10. From these data, it can be
found that total recovery rate of 2-8 # core is 38.02%, with
those of clay interlayer, small pore, medium pore, and large
pores being 20.39%, 6.06%, 10.88%, and 0.69%, respectively.

3.3.3 GJ surfactant imbibition results

The results of GJ surfactant imbibition in core 2-3-1 are
presented in Table 4, Figs. 11 and 12. From these data, it
can be found that the total recovery rate of GJ surfactant
imbibition in core 2-3-1 is 39.79%. Among them, those of the
clay interlayer and small/mesoscale/large pores are 14.56%,
2.84%, 19.72%, and 2.66%, respectively. The average total oil
recovery rate of GJ surfactant imbibition is 39.46%. Among
them, the average values of clay interlayer, small pore, medium
pore, and large pore are 15.86%, 5.29%, 15.74%, and 2.53%,
respectively.

It can be seen from Figs. 11 and 12 that the core samples
treated with GJ surfactant shows the highest increase in
saturated oil between clay layers, accounting for 56.84%.
Oil saturation in the smallest pores is 52.75% lower than
that in the interlayer of clay. The highest oil production
is achieved through imbibition and extraction in the middle
pores, accounting for 49.55%, which is 42.85% higher than
the oil production through imbibition and extraction in the
large pores. The pore recovery rate of small pores is 69.57%,
accounting for the highest proportion. Secondly, the porosity
recovery rate of mesoscale pores is 62.36% and the proportion
of interlayer clay is the lowest at only 25.63%. The mesoscale
pores have the highest overall recovery rate, accounting for
19.72%. Meanwhile, large pores only account for 2.66% of
the total recovery rate, 17.06% lower than the mesoscale pore.

The results of GJ surfactant imbibition in core 4-13-1 are
shown in Table 4 and Fig. 13. From these data, it can be found
that the total recovery rate of GJ surfactant imbibition in core
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Table 3. Interpretation of NMR testing results of core 1-10-7, 1-19-4-1, 2-2-4 and 1-18-5.

No. Status Clay interlayer
oil

Small
pore oil

Mesoscale
pore oil

Large
pore oil

Accumulated oil
signal quantity

4-10-7

Dry sample 0.2 0.07 0.08 0.07 0.42

Signal quantity of fluid after saturated oil 3.08 0.46 2 0.41 5.95

Fluid signal quantity after imbibition 2.69 0.15 1.1 0.33 4.27

Proportion of saturated oil increment 52.08 7.05 34.72 6.15 100

Proportion of imbibition oil produced 23.21 18.45 53.57 4.76 100.00

Recovery rate of pores of different sizes 13.54 79.49 46.88 23.53 30.38

Contribution to total recovery rate 7.05 5.61 16.27 1.45 30.38

1-19-4-1

Dry sample 0.28 0.13 0.05 0 0.46

Signal quantity of fluid after saturated oil 3.48 1.1 2.13 0.29 7

Fluid signal quantity after imbibition 2.56 0.7 1.21 0.26 4.73

Proportion of saturated oil increment 48.93 14.83 31.8 4.43 100

Proportion of oil produced by imbibition 40.53 17.62 40.53 1.32 100

Recovery rate of pores of different sizes 28.75 41.24 44.23 10.34 34.71

Contribution to total recovery rate 14.07 6.12 14.07 0.46 34.71

2-2-4

Dry sample 0.24 0.14 0.05 0 0.43

Signal quantity of fluid after saturated oil 5.1 0.55 1.69 0.35 7.69

Fluid signal quantity after imbibition 3.71 0.27 1.03 0.29 5.3

Proportion of saturated oil increment 66.94 5.65 22.59 4.82 100

Proportion of imbibition oil produced 58.16 11.72 27.62 2.51 100.00

Recovery rate of pores of different sizes 28.60 68.29 40.24 17.14 32.92

Contribution to total recovery rate 19.15 3.86 9.09 0.83 32.92

1-18-5

Dry sample 0.54 0.08 0.08 0.03 0.73

Signal quantity of fluid after saturated oil 5.28 0.53 1.86 0.21 7.88

Fluid signal quantity after imbibition 4.19 0.2 1.2 0.2 5.79

Proportion of saturated oil increment 66.26 6.33 24.78 2.63 100

Proportion of oil produced by imbibition 52.15 15.79 31.58 0.96 100

Recovery rates of pores of different sizes 23.00 73.33 37.08 11.11 29.23

Contribution to total recovery rate 15.24 4.62 9.23 0.28 29.23

Fig. 6. Testing data of 1-19-4-1 after guanidine gum imbibition: (a) Dry sample, (b) saturated oil and (c) guanidine gum
imbibition.
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Fig. 7. NMR testing results of shale core 2-2-4 for different states: (a) Dry sample, (b) saturated oil and (c) distilled water
imbibition.
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Fig. 8. Interpretation data of distilled water imbibition in core
2-2-4.

4-13-1 is 39.12%. Among them, those of the clay interlayer
and small/mesoscale/macroscale pores are 17.22 %, 7.74 %,
11.75 %, 2.40 %.

3.3.4 Alkali solution imbibition results

The results of alkali solution imbibition in core 4-11-6 are
shown in Table 4, Figs. 14 and 15. From these data, it can be
found that, firstly, total recovery rate of alkaline imbibition
in core 4-11-6 is 61.50%, among which those of the clay
interlayer and small/medium/large pore are 20.93%, 2.71%,
37.20%, 0.65%. Secondly, the average total recovery rate of
alkali solution imbibition is 55.48%. Among them, the average
values of clay interlayer, small pores, mesoscale pores, and
macroscale pores are 22.60%, 2.84%, 29.24%, and 0.80%,
respectively.

From Figs. 14 and 15, it can be found that, firstly, the
core samples treated with alkaline solution have the highest
percentage of saturated oil increment in the mesoscale pores
and the highest percentage of oil extracted through imbibition,
which are 56.83% and 60.49%, respectively. Secondly, the
pore recovery rate of small pores also reaches 92.59%. The
recovery rate of interlayer pores is lowest in clay at only
52.88%. Regarding the contribution to the total recovery rate,
mesoscale pores have the highest proportion, accounting for
37.20%. Meanwhile, the contribution of large pores to the total
recovery rate is only 0.65%, which is 36.55% lower than that
of mesoscale pores.

3.3.5 Acid solution imbibition results

The results of acid solution imbibition in core 1-17-6 are
presented in Table 5, Figs. 16 and 17. From these data, it can
be found that, firstly, the total recovery rate of acid imbibition
in core 1-17-6 is 60.92%. Among them, the contribution of
the clay interlayer and small/mesoscale/macroscale pores are
8.68%, 39.95%, 11.79%, 0.50%. Secondly, the average total
recovery rate of acid imbibition is 53.92%. Among them, the
average values of clay interlayer and small/mesoscale/large
pores are 9.56%, 22.67%, 21.12%, 0.58%.

It can be seen from Figs. 16 and 17 that after acid
treatment, the saturated oil increment in small pores is the
highest, accounting for 58.93%. That of the largest pore is
the lowest at only 0.99%, which is 57.94% lower than the
small pore. Moreover, the imbibition from small pores is also
the highest, accounting for 65.58%. Oil production through
imbibition from large pores is 0.81%, while that from small
pores is 64.77% higher. The pore recovery rate of small pores
is 67.79%, accounting for the highest proportion. Secondly, the
porosity recovery rate of mesoscale pores is 64.63%, with the
lowest proportion of interlayer clay. The total recovery rate is
highest for small and mesoscale pores, accounting for 39.95%
of the total recovery rate, while the contribution of large pores
to the total recovery rate is only 0.5%.

The results of GJ and acid composite imbibition in core
1-18-4 are presented in Table 5 and Fig. 18. From these data,
it can be found that the total recovery rate of core 1-18-4
through the imbibition of GJ and acid composite is 50.15%.
Among them, the interlayer and small to macroscale pores of
clay are 17.86%, 3.42%, 27.23%, 1.64%.

The results of slick water and acid composite imbibition
in core 1-12-3 are shown in Table 5 and Fig. 19. From these
data, it can be found that the total recovery rate of core 1-12-3
through the imbibition of composite of slick water and acid
solution is 42.52%. Among them, the clay interlayer, small to
macroscale pores are 13.11%, 3.18%, 25.30%, 0.79%.

4. Conclusions
In this paper, the contribution of pore scales with varying

injection media to the recovery rate of imbibition has been
quantified. The key findings are shown below:

1) The average contribution rate of different types of pores
was in the order of interlayer clay (47.6%) > mesoscale
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Fig. 9. NMR testing results of shale core1-18-5 for different states: (a) Dry sample, (b) saturated oil and (c) after distilled
water imbibition.

Table 4. Interpretation of NMR testing results of core 2-2-8, 2-3-1, 4-13-1 and 4-11-6.

No. Status Clay interlayer
oil

Small
pore oil

Mesoscale
pore oil

Large
pore oil

Accumulated oil
signal quantity

2-2-8

Dry sample 0.39 0.07 0.09 0.04 0.59

Signal quantity of fluid after saturated oil 5.15 0.54 1.84 0.32 7.85

Fluid signal quantity after imbibition 3.67 0.1 1.05 0.27 5.09

Proportion of saturated oil increment 65.56 6.47 24.1 3.86 100

Proportion of oil produced by imbibition 53.62 15.94 28.62 1.81 100

Recovery rate of pores of different sizes 31.09 93.62 45.14 17.86 38.02

Contribution to total recovery rate 20.39 6.06 10.88 0.69 38.02

2-3-1

Dry sample 0.27 0.09 0.07 0.06 0.49

Signal quantity of fluid after saturated oil 3.47 0.32 1.85 0.48 6.12

Fluid signal quantity after imbibition 2.65 0.16 0.74 0.33 3.88

Proportion of saturated oil increment 56.84 4.09 31.62 7.46 100

Proportion of imbibition oil produced 36.61 7.14 49.55 6.70 100

Recovery rate of pores of different sizes 25.63 69.57 62.36 35.71 39.79

Contribution to total recovery rate 14.56 2.84 19.72 2.66 39.79

4-13-1

Dry sample 0.21 0.15 0.07 0 0.43

Signal quantity of fluid after saturated oil 4.37 0.97 2.4 0.18 7.92

Fluid signal quantity after imbibition 3.08 0.39 1.52 0 4.99

Proportion of saturated oil increment 55.54 10.95 31.11 2.40 100

Proportion of oil produced by imbibition 44.03 19.80 30.03 6.14 100

Recovery rate of pores of different sizes 31.01 70.73 37.77 100 39.12

Contribution to total recovery rate 17.22 7.74 11.75 2.40 39.12

4-11-6

Dry sample 0.49 0.13 0.06 0 0.68

Signal quantity of fluid after saturated oil 4.14 0.4 5.3 0.06 9.9

Fluid signal quantity after imbibition 2.21 0.15 1.87 0 4.23

Proportion of saturated oil increment 39.59 2.93 56.83 0.65 100

Proportion of imbibition oil produced 34.04 4.41 60.49 1.06 100

Recovery rate of pores of different sizes 52.88 92.59 65.46 100 61.50

Contribution to total recovery rate 20.93 2.71 37.20 0.65 61.50
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Fig. 10. NMR testing results of shale core 2-2-8 after slick water imbibition: (a) Dry sample, (b) saturated oil and (c) after
slick water imbibition.

Fig. 11. NMR testing results of shale core for different states of core 2-3-1: (a) Dry sample, (b) saturated oil and (c) GJ
surfactant imbibition.

pores (32.7%) > small pores (17.3%) > large pores
(2.6%).

2) The total imbibition recovery of shale with millimeter-
scale sandy laminae was ranked as alkali solution
(61.50%) > acid solution (60.92%) >GJ surfactant
(39.79%)> distilled water (32.92%)>guanidine gum
(30.38%).

3) The total imbibition recovery of laminated shale was
ranked as GJ surfactant (39.1%) > slick water (38.0%)
> guanidine gum (34.7%) > distilled water (29.2%).
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